735 research outputs found

    Extensive training of elementary finger tapping movements changes the pattern of motor cortex excitability

    Get PDF
    There is evidence of a strong capacity for functional and structural reorganization in the human motor system. However, past research has focused mainly on complex movement sequences over rather short training durations. In this study we investigated changes in corticospinal excitability associated with longer training of elementary, maximum-speed tapping movements. All participating subjects were consistent right-handers and were trained using either the right (experiment 1) or the left thumb (experiment 2). Transcranial magnetic stimulation was applied to obtain motor evoked potentials (MEPs) from the abductor pollicis brevis (APB) muscle of the right and the left hand before and after training. As a result of training, a significant increase was observed in tapping speed accompanied by increased MEPs, recorded from the trained APB muscle, following contralateral M1 stimulation. In the case of subdominant-hand training we additionally demonstrate increased MEP amplitudes evoked at the right APB (untrained hand) in the first training week. Enhanced corticospinal excitability associated with practice of elementary movements may constitute a necessary precursor for inducing plastic changes within the motor system. The involvement of the ipsilateral left M1 likely reflects the predominant role of the left M1 in the general control (modification) of simple motor parameters in right-handed subject

    Slowing fastest finger movements of the dominant hand with low-frequency rTMS of the hand area of the primary motor cortex

    Get PDF
    Neuroimaging studies suggest that the primary hand motor area and the cerebellum play a pivotal role in the control of finger tapping, but their differential contribution in this task is unknown. We used therefore repetitive transcranial magnetic stimulation (rTMS) in its virtual lesion mode (1Hz, 10min, 90% of motor threshold) to study the effects of transient disruption of the right lateral cerebellum (CB), the left primary hand motor area (M1), and the right brachial plexus (PL, control site) on various finger tapping tasks (paced finger tapping task: PFT; tapping with maximum speed: TAPMAX, and tapping with convenient speed: TAPCON) in healthy right-handed subjects. RTMS of the left M1 slowed finger tapping speed of the right hand in the TAPMAX task. This effect eliminated the right hand superiority in the TAPMAX task. In addition, rTMS of the left M1 resulted in slower tapping speeds for both hands during TAPCON. There were no other effects of rTMS on tapping speed or tapping variability. Findings indicate that M1 is essential for generating fastest finger movement

    Priming theta burst stimulation enhances motor cortex plasticity in young but not old adults

    Get PDF
    Abstract not availableGeorge M. Opie, Eleni Vosnakis, Michael C. Ridding, Ulf Ziemann, John G. Semmle

    Direct-current-dependent shift of theta-burst-induced plasticity in the human motor cortex

    Get PDF
    Animal studies using polarising currents have shown that induction of synaptic long-term potentiation (LTP) and long-term depression (LTD) by bursts of patterned stimulation is affected by the membrane potential of the postsynaptic neurone. The aim of the present experiments was to test whether it is possible to observe similar phenomena in humans with the aim of improving present protocols of inducing synaptic plasticity for therapeutic purposes. We tested whether the LTP/LTD-like after effects of transcranial theta-burst stimulation (TBS) of human motor cortex, an analogue of patterned electrical stimulation in animals, were affected by simultaneous transcranial direct-current stimulation (tDCS), a non-invasive method of polarising cortical neurones in humans. Nine healthy volunteers were investigated in a single-blind, balanced cross-over study; continuous TBS (cTBS) was used to introduce LTD-like after effects, whereas intermittent TBS (iTBS) produced LTP-like effects. Each pattern was coupled with concurrent application of tDCS (<200 s, anodal, cathodal, sham). Cathodal tDCS increased the response to iTBS and abolished the effects of cTBS. Anodal tDCS changed the effects of cTBS towards facilitation, but had no impact on iTBS. Cortical motor thresholds and intracortical inhibitory/facilitatory networks were not altered by any of the stimulation protocols. We conclude that the after effects of TBS can be modulated by concurrent tDCS. We hypothesise that tDCS changes the membrane potential of the apical dendrites of cortical pyramidal neurones and that this changes the response to patterned synaptic input evoked by TBS. The data show that it may be possible to enhance LTP-like plasticity after TBS in the human cortex

    Modulation of dorsal premotor cortex differentially influences I‐wave excitability in primary motor cortex of young and older adults

    Get PDF
    First published: 16 May 2023Previous research using transcranial magnetic stimulation (TMS) has demonstrated weakened connectivity between dorsal premotor cortex (PMd) and motor cortex (M1) with age. While this alteration is probably mediated by changes in the communication between the two regions, the effect of age on the influence of PMd on specific indirect (I) wave circuits within M1 remains unclear. The present study therefore investigated the influence of PMd on early and late I-wave excitability inM1of young and older adults. Twenty-two young (mean±SD, 22.9±2.9 years) and 20 older (66.6 ± 4.2 years) adults participated in two experimental sessions involving either intermittent theta burst stimulation (iTBS) or sham stimulation over PMd. Changes within M1 following the intervention were assessed with motor-evoked potentials (MEPs) recorded from the right first dorsal interosseous muscle. We applied posterior–anterior (PA) and anterior–posterior (AP) current single-pulse TMS to assess corticospinal excitability (PA1mV; AP1mV; PA0.5mV, early; AP0.5mV, late), and paired-pulse TMS short intracortical facilitation for I-wave excitability (PA SICF, early; AP SICF, late). Although PMd iTBS potentiated PA1mV and AP1mV MEPs in both age groups (both P < 0.05), the time course of this effect was delayed for AP1mV in older adults (P = 0.001). Furthermore, while AP0.5mV, PA SICF and AP SICF were potentiated in both groups (all P < 0.05), potentiation of PA0.5mV was only apparent in young adults (P < 0.0001).While PMd influences early and late I-wave excitability in young adults, direct PMdmodulation of the early circuits is specifically reduced in older adults.Wei-Yeh Liao, George M. Opie, Ulf Ziemann, and John G. Semmle

    Simply longer is not better: reversal of theta burst after-effect with prolonged stimulation

    Get PDF
    From all rTMS protocols at present, the theta burst stimulation (TBS) is considered the most efficient in terms of number of impulses and intensity required during a given stimulation. The aim of this study was to investigate the effects of inhibitory and excitatory TBS protocols on motor cortex excitability when the duration of stimulation was doubled. Fourteen healthy volunteers were tested under four conditions: intermittent theta bust stimulation (iTBS), continuous theta burst stimulation (cTBS), prolonged intermittent theta bust stimulation (ProiTBS) and prolonged continuous theta burst stimulation (ProcTBS). The prolonged paradigms were twice as long as the conventional TBS protocols. Conventional facilitatory iTBS converted into inhibitory when it was applied for twice as long, while the normally inhibitory cTBS became facilitatory when the stimulation duration was doubled. Our results show that TBS-induced plasticity cannot be deliberately enhanced simply by prolonging TBS protocols. Instead, when stimulating too long, after-effects will be reversed. This finding supplements findings at the short end of the stimulation duration range, where it was shown that conventional cTBS is excitatory in the first half and switches to inhibition only after the full length protocol. It is relevant for clinical applications for which an ongoing need for further protocol improvement is imminent

    Plasticity induced by non-invasive transcranial brain stimulation: A position paper

    Get PDF
    Several techniques and protocols of non-invasive transcranial brain stimulation (NIBS), including transcranial magnetic and electrical stimuli, have been developed in the past decades. Non-invasive transcranial brain stimulation may modulate cortical excitability outlasting the period of non-invasive transcranial brain stimulation itself from several minutes to more than one hour. Quite a few lines of evidence, including pharmacological, physiological and behavioral studies in humans and animals, suggest that the effects of non-invasive transcranial brain stimulation are produced through effects on synaptic plasticity. However, there is still a need for more direct and conclusive evidence. The fragility and variability of the effects are the major challenges that non-invasive transcranial brain stimulation currently faces. A variety of factors, including biological variation, measurement reproducibility and the neuronal state of the stimulated area, which can be affected by factors such as past and present physical activity, may influence the response to non-invasive transcranial brain stimulation. Work is ongoing to test whether the reliability and consistency of non-invasive transcranial brain stimulation can be improved by controlling or monitoring neuronal state and by optimizing the protocol and timing of stimulation

    Dissociation of Motor Task-Induced Cortical Excitability and Pain Perception Changes in Healthy Volunteers

    Get PDF
    Background: There is evidence that interventions aiming at modulation of the motor cortex activity lead to pain reduction. In order to understand further the role of the motor cortex on pain modulation, we aimed to compare the behavioral (pressure pain threshold) and neurophysiological effects (transcranial magnetic stimulation (TMS) induced cortical excitability) across three different motor tasks. Methodology/Principal Findings Fifteen healthy male subjects were enrolled in this randomized, controlled, blinded, cross-over designed study. Three different tasks were tested including motor learning with and without visual feedback, and simple hand movements. Cortical excitability was assessed using single and paired-pulse TMS measures such as resting motor threshold (RMT), motor-evoked potential (MEP), intracortical facilitation (ICF), short intracortical inhibition (SICI), and cortical silent period (CSP). All tasks showed significant reduction in pain perception represented by an increase in pressure pain threshold compared to the control condition (untrained hand). ANOVA indicated a difference among the three tasks regarding motor cortex excitability change. There was a significant increase in motor cortex excitability (as indexed by MEP increase and CSP shortening) for the simple hand movements. Conclusions/Significance: Although different motor tasks involving motor learning with and without visual feedback and simple hand movements appear to change pain perception similarly, it is likely that the neural mechanisms might not be the same as evidenced by differential effects in motor cortex excitability induced by these tasks. In addition, TMS-indexed motor excitability measures are not likely good markers to index the effects of motor-based tasks on pain perception in healthy subjects as other neural networks besides primary motor cortex might be involved with pain modulation during motor training
    corecore